New neutralizing agents against SARS-CoV-2 and associated mutant strains are urgently needed for the treatment and prophylaxis of COVID-19. Herein, we develop a spherical cocktail neutralizing aptamer-gold nanoparticle (SNAP) to block the interaction between the receptor-binding domain (RBD) of SARS-CoV-2 and host ACE2. With the multivalent aptamer assembly as well as the steric hindrance effect of the gold scaffold, SNAP exhibits exceptional binding affinity against the RBD with a dissociation constant of 3.90 pM and potent neutralization against authentic SARS-CoV-2 with a half-maximal inhibitory concentration of 142.80 fM, about 2 or 3 orders of magnitude lower than that of the reported neutralizing aptamers and antibodies. More importantly, the synergetic blocking strategy of multivalent multisite binding and steric hindrance ensures broad neutralizing activity of SNAP, almost completely blocking the infection of three mutant pseudoviruses. Overall, the SNAP strategy provides a new direction for the development of antivirus agents against SARS-CoV-2 and other emerging coronaviruses.

Matéria original

Anterior

In-silico screening of naturally derived phytochemicals against SARS-CoV Main protease

Próxima

A randomised controlled trial testing the efficacy of Fit after COVID, a cognitive behavioural therapy targeting severe post-infectious fatigue following COVID-19 (ReCOVer): study protocol